TCP/IP 详解(卷一) TCP的成块数据流

TFTP使用了停止等待协议,数据发送方在发送下一个数据块之前需要等待接收对已发送数据的确认。TCP使用了被称为滑动窗口协议的另一种形式的流量控制方法。该协议允许发送方在停止并等待确认前可以连续发送多个分组。由于发送方不必每发一个分组就停下来等待确认,因此该协议可以加速数据的传输。

滑动窗口

接收方通告的窗口称为提出的窗口(offered window),发送方计算它的可用窗口,该窗口表明多少数据可以立即被发送。

当接收方确认数据后,这个滑动窗口不时地向右移动。窗口两个边沿的相对运动增加或减少了窗口的大小。我们使用三个术语来描述窗口左右边沿的运动:

  1. 称窗口左边沿向右边沿靠近为窗口合拢。这种现象发生在数据被发送和确认时。
  2. 当窗口右边沿向右移动时将允许发送更多的数据,我们称之为窗口张开。这种现象发生在另一端的接收进程读取已经确认的数据并释放了TCP的接收缓存时。
  3. 当右边沿向左移动时,我们称之为窗口收缩。Host Requirements RFC强烈建议不要使用这种方式。但TCP必须能够在某一端产生这种情况时进行处理。

因为窗口的左边沿受另一端发送的确认序号的控制,因此不可能向左边移动。如果接收到一个指示窗口左边沿向左移动的ACK,则它被认为是一个重复ACK,将被丢弃。

如果左边沿到达右边沿,则称其为一个零窗口,此时发送方不能够发送任何数据。

滑动窗口的特点:

  1. 发送方不必发送一个全窗口大小的数据。
  2. 来自接收方的一个报文段确认数据并把窗口向右边滑动。这是因为窗口的大小是相对于确认序号的。
  3. 窗口的大小可以减小,但是窗口的右边沿却不能够向左移动。
  4. 接收方在发送一个ACK前不必等待窗口被填满。

窗口大小

由接收方提供的窗口的大小通常可以由接收进程控制,这将影响TCP的性能。

[Mogul 1993]显示了在改变发送和接收缓存大小(在单向数据流的应用中,如文件传输,只需改变发送方的发送缓存和接收方的接收缓存大小)的情况下,位于以太网上的两个工作站之间进行文件传输时的一些结果。它表明对以太网而言,默认的4096字节并不是最理想的大小,将两个缓存增加到16384个字节可以增加约40%左右的吞吐量。在[Papadopoulos和Parulkar 1993]中也有相似的结果。

PUSH标志

发送方使用该标志通知接收方将所收到的数据全部提交给接收进程。这里的数据包括与PUSH一起传送的数据以及接收方TCP已经为接收进程收到的其他数据。

在最初的TCP规范中,一般假定编程接口允许发送进程告诉它的TCP何时设置PUSH标志。例如,在一个交互程序中,当客户发送一个命令给服务器时,它设置PUSH标志并停下来等待服务器的响应(在习题19.1中我们假定当发送12字节的请求时客户设置PUSH标志)。通过允许客户应用程序通知其TCP设置PUSH标志,客户进程通知TCP在向服务器发送一个报文段时不要因等待额外数据而使已提交数据在缓存中滞留。类似地,当服务器的TCP接收到一个设置了PUSH标志的报文段时,它需要立即将这些数据递交给服务器进程而不能等待判断是否还会有额外的数据到达。

然而,目前大多数的API没有向应用程序提供通知其TCP设置PUSH标志的方法。的确,许多实现程序认为PUSH标志已经过时,一个好的TCP实现能够自行决定何时设置这个标志。

如果待发送数据将清空发送缓存,则大多数的源于伯克利的实现能够自动设置PUSH标志。这意味着我们能够观察到每个应用程序写的数据均被设置了PUSH标志,因为数据在写的时候就立即被发送。

代码中的注释表明该算法对那些只有在缓存被填满或收到一个PUSH标志时才向应用程序提交数据的TCP实现有效。 使用插口API通知TCP设置正在接收数据的PUSH标志或得到该数据是否被设置PUSH标志的信息是不可能的。

由于源于伯克利的实现一般从不将接收到的数据推迟交付给应用程序,因此它们忽略所接收的PUSH标志。

慢启动

发送方一开始便向网络发送多个报文段,直至达到接收方通告的窗口大小为止。当发送方和接收方处于同一个局域网时,这种方式是可以的。但是如果在发送方和接收方之间存在多个路由器和速率较慢的链路时,就有可能出现一些问题。一些中间路由器必须缓存分组,并有可能耗尽存储器的空间。[Jacobson 1988]证明了这种连接方式是如何严重降低了TCP连接的吞吐量的。

现在,TCP需要支持一种被称为“慢启动(slow start)”的算法。该算法通过观察到新分组进入网络的速率应该与另一端返回确认的速率相同而进行工作。

慢启动为发送方的TCP增加了另一个窗口:拥塞窗口(congestion window),记为cwnd。当与另一个网络的主机建立TCP连接时,拥塞窗口被初始化为1个报文段(即另一端通告的报文段大小)。每收到一个ACK,拥塞窗口就增加一个报文段(cwnd以字节为单位,但是慢启动以报文段大小为单位进行增加)。发送方取拥塞窗口与通告窗口中的最小值作为发送上限。拥塞窗口是发送方使用的流量控制,而通告窗口则是接收方使用的流量控制。

发送方开始时发送一个报文段,然后等待ACK。当收到该ACK时,拥塞窗口从1增加为2,即可以发送两个报文段。当收到这两个报文段的ACK时,拥塞窗口就增加为4。这是一种指数增加的关系。

在某些点上可能达到了互联网的容量,于是中间路由器开始丢弃分组。这就通知发送方它的拥塞窗口开得过大。

紧急方式

TCP提供了“紧急方式(urgent mode)”,它使一端可以告诉另一端有些具有某种方式的“紧急数据”已经放置在普通的数据流中。另一端被通知这个紧急数据已被放置在普通数据流中,由接收方决定如何处理。

可以通过设置TCP首部中的两个字段来发出这种从一端到另一端的紧急数据已经被放置在数据流中的通知。URG比特被置1,并且一个16bit的紧急指针被置为一个正的偏移量,该偏移量必须与TCP首部中的序号字段相加,以便得出紧急数据的最后一个字节的序号。

仍有许多关于紧急指针是指向紧急数据的最后一个字节还是指向紧急数据最后一个字节的下一个字节的争论。最初的TCP规范给出了两种解释,但Host RequirementsRFC确定指向最后一个字节是正确的。 然而,问题在于大多数的实现(包括源自伯克利的实现)继续使用错误的解释。所有符合Host Requirements RFC的实现都是可兼容的,但很有可能无法与其他大多数主机正确通信。

TCP必须通知接收进程,何时已接收到一个紧急数据指针以及何时某个紧急数据指针还不在此连接上,或者紧急指针是否在数据流中向前移动。接着接收进程可以读取数据流,并必须能够被告知何时碰到了紧急数据指针。只要从接收方当前读取位置到紧急数据指针之间有数据存在,就认为应用程序处于“紧急方式”。在紧急指针通过之后,应用程序便转回到正常方式。

TCP本身对紧急数据知之甚少。没有办法指明紧急数据从数据流的何处开始。TCP通过连接传送的唯一信息就是紧急方式已经开始(TCP首部中的URG比特)和指向紧急数据最后一个字节的指针。其他的事情留给应用程序去处理。

不幸的是,许多实现不正确地称TCP的紧急方式为带外数据(out-of-band data)。如果一个应用程序确实需要一个独立的带外信道,第二个TCP连接是达到这个目的的最简单的方法(许多运输层确实提供许多人认为的那种真正的带外数据:使用同一个连接的独立的逻辑数据通道作为正常的数据通道。这是TCP所没有提供的)。

TCP的紧急方式与带外数据之间的混淆,也是因为主要的编程接口(插口API)将TCP的紧急方式映射为称为带外数据的插口。

紧急方式有什么作用呢?两个最常见的例子是Telnet和Rlogin。

Telnet和Rlogin从服务器到客户使用紧急方式是因为在这个方向上的数据流很可能要被客户的TCP停止(也即,它通告了一个大小为0的窗口)。但是如果服务器进程进入了紧急方式,尽管它不能够发送任何数据,服务器TCP也会立即发送紧急指针和URG标志。当客户TCP接收到这个通知时就会通知客户进程,于是客户可以从服务器读取其输入、打开窗口并使数据流动。

如果在接收方处理第一个紧急指针之前,发送方多次进入紧急方式会发生什么情况呢?在数据流中的紧急指针会向前移动,而其在接收方的前一个位置将丢失。接收方只有一个紧急指针,每当对方有新的值到达时它将被覆盖。这意味着如果发送方进入紧急方式时所写的内容对接收方非常重要,那么这些字节数据必须被发送方用某种方式特别标记。我们将看到Telnet通过在数据流中加入一个值为255的字节作为前缀来标记它所有的命令。

Contents

0